




as “action values.” A high success rate at one time point would
indicate that the cursor had reached the target and needed to be
maintained at the current location and that the actions related to
the current outcome should be associated with a high value or
reward. Accordingly, the success rate would be positively corre-
lated with the reward-processing activity, the pattern of which
would change in different learning stages. We thus performed
whole-brain voxel-wise general linear model (GLM) analyses
with a parametric regressor modulating the time-varying success
rate using the data from the two fMRI sessions to delineate the
regions involved in value or reward processing in the early and
later stages (SI Appendix, Figs. S4 and S11).
Whole-brain analyses. The analyses identified distinctive patterns of
fMRI activity modulated by the success rate in the early vs. late
learning stages (Fig. 3 and SI Appendix, Tables S1 and S2).
During early learning, robust positive success-rate modulation
was observed in the striatum, including the nucleus accumbens
(NAc), anterior regions of the putamen (AP), and caudate nu-
cleus (CDh), reflecting their roles in the goal-directed behaviors
(Fig. 3, Upper). These regions were no longer involved in the late
learning stage, but only the bilateral posterior caudate nucleus
(CDt) in the striatum were positively related to the success-rate
modulation (Fig. 3, Lower). In the cortical regions, the modu-
latory activity globally decreased in the cognitive-attentional
network, including the supramarginal gyrus, insular, superior
parietal cortex (31, 32), and the ventral visual network (SI Ap-
pendix, Fig. S5 and Table S1). These changes potentially reflect
suppressed activity related to habitual responses and increasing
neural efficiency as learning proceeded (3, 12, 17, 33). Interest-
ingly, the left superior frontal cortex or frontal pole cortex (FPC),
ventromedial prefrontal cortex (VMPFC), and precuneus/middle
cingulate cortex appeared to be involved both in the early and late
learning, potentially due to their functions commonly required

throughout the learning stages (Fig. 3 and SI Appendix, Tables S1
and S2).
Region-of-interest analyses in the stratum and VMPFC. To closely exam-
ine the performance-related fMRI activity in reward-processing
regions across learning stages, we conducted region-of-interest
(ROI) analyses primarily in the striatum, including the subregions
of the caudate nucleus (head, body, and tail), putamen, and NAc.
As there exists evidence of the learning-induced transition of ac-
tivity from the anterodorsal to posteroventral regions of the
putamen (11), subdivided ROIs of the putamen were defined
accordingly (SI Appendix, Fig. S6). For the cortical region, we
included the VMPFC due to its established role in value repre-
sentation and reward prediction (34–36).
We first investigated whether the success-modulated fMRI

activity would show changes across learning stages differentially
in the subregions of the caudate nucleus as well as in other ROIs,
using the trained-mapping data. For each caudate subregion, the
left and right ROIs were combined, as their respective activities
did not differ from each other (corrected P > 0.61 for all sub-
regions, pairwise t test). The patterns of success-modulated ac-
tivity indeed differed by the regions [two-way ROI X learning
stage repeated-measures permutation ANOVA, F(6,174) =
12.96, P = 10−4, ηp2 = 0.31], by learning stage [F(1,29) = 5.26,
P = 0.027, ηp2 = 0.15], and also by the interaction of the regions
and learning stages [F(6,174) = 21.16, P = 10−4, ηp2 = 0.42]
(Fig. 4 and SI Appendix, Fig. S6).
Post hoc analyses revealed the hypothesized anteroposterior

transition in the caudate nucleus (Fig. 4, Lower). From the early
to the late stage of learning, the success-modulated activity de-
creased in the caudate head [T(29) = 3.56, corrected P = 0.0069,
Cohen’s d = 0.65], yet increased in the caudate tail [T(29) = 4.43,
corrected P < 10−3, Cohen’s d = 0.81]. No such change was

Fig. 2. Behavioral results. (A) Sample of actual cursor trajectories for the trained mapping made by one representative participant, at different learning
stages (beginning: fMRI 1, run 1; intermediate: behav 3, run 2; end: fMRI 2, run 3). (B) Curve of the block-by-block aspect ratio of the actual trajectory, a
measure of straightness, for different mappings. The decrease in the aspect ratio suggests that participants tended to make straighter movements as learning
proceeded. (C) Curve of the block-by-block success rate (proportion of time during which the cursor was on the target) for different mappings. The increase in
the success rate suggests that participants tended to reach the targets more quickly and stayed longer on them as learning proceeded. For both curves, the
solid green line denotes the group average of the block-by-block aspect ratio for the trained mapping, while the solid gray line denotes that for the untrained
mapping. Lighter-colored shades around the solid lines indicate SE. Since participants were only trained on the trained mapping during the five behavioral
sessions (Behav 1 to 5), only the data from the two fMRI sessions (fMRI 1 and 2) exist for the untrained mapping.
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observed in the caudate body [T(29) = 0.45, corrected P = 1.00,
Cohen’s d = 0.082] (Fig. 4).
A general tendency of decreasing success-rate modulation was

observed in other striatal regions (SI Appendix, Fig. S6), including
the anterior putamen [T(29) = 5.06, corrected P < 10−3, Cohen’s
d = 0.92] and NAc [T(29) = 6.00, corrected P < 10−4, Cohen’s d =
1.09]. However, the posterior putamen T(29) = 2.33, corrected
P = 0.17, Cohen’s d = 0.43] and VMPFC [T(29) = 0.41, corrected
P = 1.00, Cohen’s d = 0.075] showed no significant changes.
These results appear to provide intriguing insights regarding

the differential involvement of the regions in reward-based de
novo motor learning. First, although a previous study using a
motor sequence-learning task had reported an anteroposterior
transition of learning-related activity in the putamen (11), the
locus of such clear transition was the caudate nucleus in the
current study (SI Appendix, Fig. S6). Second, the NAc, a part of
the ventral striatum that had been rarely reported in motor
learning studies (37), showed significant positive success modu-
lation in the early stage, which diminished in the later stage.
Third, the success-modulated activity in the VMPFC was sig-
nificantly positive in both early and late learning stages (Fig. 3
and SI Appendix, Fig. S6D and Table S1, “Common” section). In
line with this outcome, previous studies had shown that the
VMPFC represents not only the values associated with stimuli,
but also the learned values of actions (35, 38), and that it is in-
volved in reward processing regardless of learning stages, prob-
ably as a value comparator (39).
The activity changes were learning-induced and specific to the trained
mapping. We examined the possibility that the observed changes
in fMRI activity were not due to learning of the mappings, but
due to nonspecific effects, such as prolonged exposure to the
same visual stimuli. We thus conducted identical analyses with
the data from the untrained mapping, which shared the same
visual stimuli with the trained mapping, yet implemented an al-
tered cursor-posture mapping. In the untrained mapping, no

between-stage differences in the activity were observed
[F(1,29) = 0.37, P = 0.56, ηp2 = 0.013], although there were
significant differences due to the regions [F(6,174) = 27.42, P =
10−4, ηp2 = 0.49] and the interaction between the regions and
learning stages [F(6,174) = 2.51, P = 0.023, ηp2 = 0.080] (Fig. 4
and SI Appendix, Fig. S6).
Post hoc analyses found that, in the early stage, the activity for

the untrained mapping was not different from that for the
trained mapping (corrected P > 0.30 for all ROIs) (Fig. 4 and SI
Appendix, Fig. S6). This was not surprising, as the learning curves
of the mappings were not different between the mappings (P =
0.20, Wilcoxon signed-rank test; SI Appendix, Fig. S3). However,
in the late stage, the fMRI activity for the untrained mapping
was maintained significantly higher than that for the trained
mapping in the caudate head [T(29) = 2.60, P = 0.015], NAc
[T(29) = 4.40, P < 10−3], but lower [T(29) = 2.07, P = 0.048] in
the caudate tail, as we expected from the absence of behavioral
training. There was no such effect in the VMPFC [T(29) = 0.41,
P = 0.68] (Fig. 4 and SI Appendix, Fig. S6).

Cortico-Caudate Functional Interactions Predict Individual Learning
Performance. Following our observation of the robust learning-
induced anteroposterior transition of fMRI activity in the cau-
date nucleus, we sought to address whether the respective in-
teractions within the two separate cortico-caudate loops—the
anterior cognitive and posterior sensorimotor loops—could
predict individual learning performance (Fig. 5). To do so, we
used independently defined cortical ROIs, including the bilateral
dorsolateral prefrontal cortex (DLPFC) and left motor/somato-
sensory cortex (M1/S1) (SI Appendix, Fig. S7). These two regions
have been well established to have anatomical and functional
connections to the caudate nucleus and operate, respectively, in
early associative learning and late sensorimotor control (5, 40,
41). Then, we performed functional connectivity analyses using
the resting-state fMRI data acquired prior to the first main-task

Fig. 3. Brain regions positively related to the success rate for the early and late learning stages. Results from the whole-brain voxel-wise GLM analyses with a
parametric regressor modulating the time-varying success rate estimated every 1 s (voxel-wise P < 10−3, cluster-corrected P < 0.05) are shown. Regions
showing significant positive modulation by the success rate in the early (Upper) and late (Lower) stages of learning are presented (see SI Appendix, Table S2
and Fig. S5 for a complete list of significant clusters). The success rate, which can be considered as an action value, was highly modulated by the activities in
the anterior striatal regions, including the caudate head and NAc in the early stage, and by those in the caudate tail in the later stage. Although there were
significant success-modulated activities in both stages of learning in the VMPFC, a region known for its role in value representation, no stage-dependent
change was observed in the region. The color bar indicates the group-level Z scores, and numbers above each slice indicate MNI coordinates. AP, anterior
putamen; CDh, caudate head; CDt, caudate tail; DMPFC, dorsomedial prefrontal cortex; L, left; LOC, lateral occipital cortex; MCC, middle cingulate cortex;
MTG, middle temporal gyrus; PCu, precuneus; R, right.
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fMRI session (Fig. 1B). Specifically, we tested the connectivity
between the caudate head/body and DLPFC for the anterior
cognitive loop and that between the caudate tail and left M1/S1
for the posterior sensorimotor loop.
As the most robust measure of the learning performance, we

focused on the overall success rate of the trained-mapping main-
task trials in all fMRI and behavioral training sessions. The
connectivity between the caudate heads and the DLPFC was
negatively related to the overall success rate (Fig. 5A; R = −0.57,
P = 0.0012; L-head: R = −0.52, P = 0.0036, corrected P = 0.014;
R-head: R = −0.59, P < 10−3, corrected P = 0.003). A similar
relationship was found in the caudate bodies (Fig. 5B; R = −0.49,
P = 0.0069, corrected P = 0.027, L-body: R = −0.45, P = 0.013,
corrected P = 0.052; R-body: R = −0.50, P = 0.0063, corrected
P = 0.025). Interestingly, in contrast, the connectivity between
the caudate tails and the left M1/S1 showed significant positive
correlations with the overall success rate (Fig. 5C; R = 0.49, P =
0.0074, L-tail: R = 0.48, P = 0.0089, corrected P = 0.018; R-tail:
R = 0.44, P = 0.018, corrected P = 0.036). Taken together, these
results support dissociable processing of the cognitive and sen-
sorimotor loops via the caudate nucleus in de novo motor
skill learning.
When tested with the learning rate, which was adopted as an

alternative measure of learning performance, we found a posi-
tively significant relationship only between the caudate tails and

the left M1/S1 (R = 0.43, P = 0.018). Interestingly, this rela-
tionship was only significant in the ipsilateral connectivity (R =
0.52, P = 0.0037, corrected P = 0.0073), but not in the contra-
lateral caudate tail (R = 0.29, P = 0.12, corrected P = 0.23).
As the presence of the visual corticostriatal loop through the

caudate tail has been well known (42), we also examined the
interactions between the caudate tail and the visual cortex. The
connectivity between the caudate tail and the visual regions,
which would have been responsive to the target presentation, was
not related to the overall success rate (R = −0.30, P = 0.12).
However, the relationship was significantly pronounced in the
left caudate tail for the overall success rate (R = −0.44, P =
0.017, corrected P = 0.034). Additionally, the connectivity be-
tween the bilateral caudate tail and the visual regions was mar-
ginally related to the learning rate (R = −0.37, P = 0.050).
Overall, the connectivity in the visual corticostriatal loop was not
as robust as those in the cognitive and sensorimotor loops in
predicting learning performance (SI Appendix, Fig. S8). Al-
though this result needs to be interpreted with discretion, it may
potentially implicate that strong intrinsic functional connectivity
in the visual cortico-caudate loop would indicate considerable
and/or lingering dependence on visual feedback, which would
negatively affect the learning performance.
To investigate whether the aforementioned connectivities

were distinctively related to the learning performance in

Fig. 4. Spatiotemporal dissociation of the fMRI activity in the caudate nucleus. Rendering of the caudate nucleus illustrating the gradual transition of
subregions modulating the success rate, from the anterior (head) to posterior (tail) regions. (Top) The left image (“Early”) represents the pattern of success-
rate modulation in the early stage of learning, while the right image (“Late”) represents that in the later stage of learning. (Middle) Regions showing in-
creased (red) and decreased (blue) success-rate modulation from the early to late stage are depicted. The color bar indicates the group-level Z scores con-
verted from a paired t test. (Bottom) Activity modulated by the time-varying success rate in the caudate subregions, for the trained (solid green line) and
untrained (solid gray line) mappings in the early and later stages of learning. Error bars indicate SE. *P < 0.05; **P < 0.01; ***P < 0.001 (uncorrected P). L, left;
R, right.
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different stages, we conducted identical analyses separately for
the early and late stages. We found no significant relationship for
all of the ROIs and performance measures (corrected P > 0.05).
One possible explanation for this null finding would be the use of
single-stage performance data, which might not be sufficient to
assess the learning performance. Lastly, in addition to the
hypothesis-driven ROI analysis, we also performed exploratory
whole-brain voxel-wise correlation analysis for each seed ROI in
the caudate nucleus and the measures of learning performance
(SI Appendix, Fig. S9 and Table S3).

Localization of Hand Movement-Related Regions. A GLM analysis
on the data from an independent localizer scan identified regions
significantly activated by random finger movements. Seven
clusters (highly stringent voxel-wise threshold of P < 10−5 and a
cluster size larger than 150 voxels) were defined in the bilateral
pre/postcentral gyrus, left posterior putamen, right cerebellum
(lobules IV, V, and VIII), SMA, and thalamus (SI Appendix, Fig.
S3B and Table S4). All of these regions are implicated in hand
movement and have been shown to exhibit impairments in ac-
tivation and connectivity under conditions such as focal hand
dystonia (43).
In our experiment, it should be noted that participants were

required to stop moving their fingers once they reached a target
until the next target appeared to obtain higher success rates. Due
to this experiment design, the amount of movement was highly

collinear with the success rate used for the GLM analysis
(R = −0.70 ± 0.01, mean ± SE), indicating a greater amount of
movement in the early stage of learning. Thus, we analyzed the
localizer data to examine whether finger movements were suf-
ficient to induce the dissociative activities in the caudate nucleus,
as observed in the preceding analyses. Patterns of activity similar
to those of success-modulated activities were observed neither in
the caudate head (i.e., greater activity with increased finger
movements in the early stage) nor in the caudate tail (i.e., greater
activity with paused or reduced finger movements in the late
stage) (P > 0.8 for both, one-sample, one-tailed Wilcoxon
signed-rank test). This result demonstrates that the double dis-
sociation of fMRI activities in the caudate nucleus is less likely
due to movement per se, but, rather, due to the learned values of
motor actions as we hypothesized.

Discussion
The current study investigated the role of the human caudate
nucleus in de novo motor skill learning. The task using the data-
glove interface, which was adopted in an fMRI study, allowed
participants to learn a completely new motor skill from scratch.
Specifically, they learned the mapping from the visual feedback
in a low-dimensional outcome space (two-dimensional [2D]
cursor position) to the motor commands in a high-dimensional
action space (14-dimensional [14D] hand posture) as they pur-
sued positive feedbacks. In this aspect, the task may more closely

Fig. 5. Resting-state fMRI connectivity predictive of individual learning performance. A schematic view of the seed ROIs (head, body, and tail) in the bilateral
caudate nucleus (yellow/brown) and the independently defined cortical ROIs in the left M1/S1 (blue) and bilateral DLPFC (green) is shown. The relationships
between the cortico-caudate intrinsic functional connectivity and the overall success rate are shown in Lower. (A) Caudate head–DLPFC. (B) Caudate
body–DLPFC. (C) Caudate tail–L M1/S1. For each caudate subregion, the ROIs for the left and right hemispheres were used as separate seeds to calculate the
functional connectivity, and the resulting connectivities were then averaged together. The gray shades indicate 95% CI. Pearson correlation coefficients (r)
and uncorrected P values are presented. L, left; R, right.
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resemble the complexity and diversity of motor skills in the real
world than other tasks that have been frequently implemented in
laboratory settings. Hence, the current study offers a unique
opportunity to track the neural changes underlying the emer-
gence and development of the continuous motor skill, evolving
from the early action-selection level to the late action-execution
level (1). It may also intrigue those interested in the neurosci-
ence of development, as de novo motor skill learning would
occur incessantly during infant and child development. Notably,
the complexity and relative difficulty of the current task, com-
pared with simple sequence-learning tasks adopted in previous
studies, contribute to elucidating the distinct role of the caudate
nucleus in the learning of action–outcome associations and
value-based action selection essential for de novo skill learning.

Learning-Induced Spatiotemporal Dissociation in the Caudate
Nucleus. We discovered a robust learning-induced double disso-
ciation of fMRI activities in the subregions of the caudate nu-
cleus, as the success-rate modulation increased in the posterior
region, but decreased in the anterior region. Our results are a
demonstration of the learning-induced anterior-to-posterior
transition of fMRI activity in the caudate nucleus when humans
acquire a novel motor skill from scratch over an extended period
of time. They are in line with many human fMRI and nonhuman
primate studies suggesting the parallel operation of the anterior
cognitive and posterior sensorimotor loops in the basal ganglia in
the early and late stages of sequence learning (4, 7, 11, 14–17,
44, 45).
However, we did not find a similar transition in the putamen,

as reported in a previous human fMRI study using a sequence-
learning task (11). Indeed, a critical difference from this previous
study is that the learning-induced effect was specific to the
caudate nucleus, and not to the putamen. Accumulative evidence
has supported distinct roles of the caudate nucleus and putamen,
as the former is involved in action selection based on the values
of action–outcome associations, while the latter is primarily im-
plicated in learning of stimulus-action mappings, or habit for-
mation (46). The unique nature of our task—de novo learning of
a relatively complex motor skill—might have accentuated this
discrepancy in the functionality of the two structures. As the
participants were required to continuously track the cursor
movement for successful performance, they had to depend on
the visual feedback, even in the late learning stage. This com-
plexity of our task might have substantially compromised the
development of automatic or habitual performance, which would
induce a less pronounced involvement of the putamen. This
would not be the case for the simple sequence-learning task in
the preceding study (11).
Existing studies on the functional connections between the

caudate tail and the visual cortex appear to further support this
interpretation (29, 42, 47). Although further investigation is
warranted, our results may partially suggest that stronger visual-
caudate tail functional connectivity hinders skillful performance.
This may be interpreted as the evidence of lingering dependence
on visual feedback, even in the advanced stage of learning, which
would likely lead to less automaticity and suboptimal perfor-
mance. For these reasons, we hypothesize that our task, which
required continuous visual feedback due to its considerable
complexity, elicited greater engagement of the visual cortico-
caudate interaction, unlike typical sequence-learning tasks, and
induced the differential engagement of the caudate nucleus
and putamen.
Recently, a series of nonhuman primate studies identified

distinct sets of dopaminergic neurons innervating the anterior
and posterior regions of the caudate nucleus as the potential
neurobiological underpinnings of the respective modulation of
early flexible and later stable values for the learning of arbitrary
object–value associations, which is named “object skill” (2, 28,

29, 48). In these studies, monkeys learned to make saccades to
multiple visual objects with higher chances of receiving a liquid
reward. The object-value contingency was consistent in the stable
condition, but was frequently reversed in the flexible condition.
The neurons in the caudate head were found to be sensitive to
immediate-reward outcomes in the flexible condition, respond-
ing more strongly to high-value objects. Interestingly, after ex-
tensive training in the stable condition, the neurons in the caudate
tail responded to the stably high-valued objects, even in the ab-
sence of reward, as monkeys continued to show automatic gaze to
the objects. These findings have significantly advanced the un-
derstanding of the role of the parallel basal ganglia circuits in
mediating goal-directed and automatic processes for object skill.
However, there remains much to be elucidated about the re-
spective roles of these circuits for the “action skill” (i.e., the
learning of arbitrary action–outcome associations). Here, we have
demonstrated that successful learning of actions arbitrarily asso-
ciated with higher values (i.e., greater success rates) was closely
linked to the activities encoding “action values” in the caudate
nucleus, which could be similarly dissociated for the early-flexible
and late-stable learning stages. These results thus provide evi-
dence in humans supporting the hypothesis that the object skill
and the action skill share common neurobiological mechanisms
involving the parallel circuits of the caudate nucleus.
Our results may also be interpreted in relation to the role of

the caudate nucleus in well-studied category learning, since the
current task involves feedback-based learning of associations
between different hand postures and distinct target positions. It
has been shown that impairments of the caudate head, which are
typically observed in patients with Parkinson’s disease, may lead
to deficits in rule-based and explicit category learning (49, 50).
Few fMRI studies also have demonstrated that the activities in
the body and tail of the caudate are associated with improved
category learning (51, 52). However, it should also be noted that,
in our experiment, participants learned the general mapping
between hand postures and cursor positions, rather than simple
associations between specific hand postures and target positions,
as suggested by the learning-induced increase in the straightness
of movement (Fig. 2 A and B). Moreover, participants general-
ized the motor skill to untrained targets presented in the sec-
ondary “path-following tasks,” in which adjacent untrained
targets had to be reached sequentially along with the main-task
targets. This generalization ability, the hallmark of implicitly
acquired motor learning, was shown to be attributable to the
continuous cursor feedback in similar tasks (23, 53). Specifically,
without the feedback, participants would simply learn the hand
postures associated with the target position, not the mapping
between them. Investigation on the neural mechanisms of gen-
eralization by manipulating the visual feedback would be an
interesting future study.

Dissociable Roles of the Cognitive and Sensorimotor Loops. The
resting-state functional connectivity analysis further revealed
distinct relationships of the cognitive and sensorimotor cortico-
caudate loops with learning performance. We hypothesized that
the cognitive loop would play an important role in implementing
cognitive strategies in the early stage, while the sensorimotor
loop would be implicated in the late stage with more efficient
movement and higher performance. If an individual continues to
rely heavily on conscious cognitive processes, even in the later
stage of learning, desired motor behavior may be delayed or
hindered, which would, in turn, negatively affect performance
(54–56). Conversely, if attention is divided by dual tasks with the
main motor task being away from cognitive processes, automatic
skill performance may improve (57). In line with these predic-
tions, we found that participants with higher learning perfor-
mance showed weaker intrinsic connectivity between the caudate
head/body and DLPFC, but stronger intrinsic connectivity
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between the caudate tail and M1/S1. This result is supported by
previous rodent and human fMRI studies that showed that
greater disengagement of the associative loop predicted higher
learning performance and proposed parallel, but dissociable,
activity dynamics of the cognitive and sensorimotor loops (8, 58).
However, the role of the cognitive loop in our task might be

different from that in the previous sequence-learning tasks, as
the participants did not explicitly learn the spatial and motor
sequences, but instead learned the mapping between them (59).
Indeed, the target sequence was identical between the trained
and untrained mappings, and, thus, learning was not related to a
specific spatial sequence of the target. Accordingly, the spatial
and motor information were not clearly distinct in our task and
would have been concurrently processed (8), while the partici-
pants learned to transform the spatial coordinate (i.e., cursor
feedback) to the motor coordinate (i.e., hand posture). For these
reasons, in our task, the role of the cognitive loop would be more
related to strategic action selection for a higher reward through
exploration or exploitation, rather than spatial information
processing as suggested by a previous model (59). The cognitive
loop might also have been involved in other high-level learning
components, such as attention and working memory retained for
the reward history associated with a series of performed actions.
On the other hand, the positive relationship between the

functional connectivity in the sensorimotor loop and higher
learning performance suggests that the learned associations be-
tween actions and outcomes would be encoded as long-term
memories in the sensorimotor loop (48), much like the internal
model in the cerebellum (60). In addition to the role of the
caudate tail in the sensorimotor loop, its interaction with the
visual region appears to affect the skill performance, at least to
some extent. Although the relationship was not as robust as in
the cognitive loop, greater disengagement in the visual cortico-
striatal loop vis the caudate tail (left only) predicted higher
learning performance. The opposite roles played by the caudate
tail in the sensorimotor loop and in the visual loop implicate the
learning-induced dissociation between these loops, which is also
supported by the previous study using a motor sequence-learning
task (58).
Furthermore, other modeling and fMRI studies have suggested

a competitive interaction between the “fast” goal-directed and the
“slow” habitual processes (30, 61–63). Future studies would still be
needed to elucidate the dynamic interactions between learning
processes occurring at different—possibly multiple—time scales,
as suggested by motor adaptation studies (30, 64) and recent re-
view papers (29, 48).

Linking Reward-Based Mechanisms to Motor Learning. It should be
noted that the current experiment provided feedbacks indicating
current success (red-lighted target) or failure (unlighted target)
without monetary reward for a successful performance. To pro-
vide a monetary reward after a good performance has been
shown to enhance skill consolidation (65) and even affect un-
conscious motivation (66), with heightened activation in the
ventral striatum. Interestingly, we found highly significant
success-modulated activity in the ventral striatum (NAc) during
the early stage, which supports its role in motor learning without
explicit monetary reward that has been rarely studied (67, 68).
We speculate that, in complex de novo learning of an entirely
new controller with considerable difficulty, positive feedbacks
following successfully executed actions may be intrinsically con-
sidered more rewarding and, accordingly, elicit strong neural
activities in the ventral striatum (68). In contrast, many previous
motor sequence-learning and motor adaptation experiments had
adopted relatively simple tasks, which would have yielded lower
intrinsic rewards for successful learning. Thus, in these experi-
ments, the ventral striatum might not have responded as strongly
to positive feedbacks, unless the values of feedbacks were

significantly heightened by the introduction of monetary reward.
Interestingly, there has been a study suggesting that the in-
volvement of the ventral striatum tends to be more pronounced
for a more challenging task condition, particularly in older adults
(67), which appears to be in accordance with our interpretation.
It would be an intriguing future work to investigate whether and
to what extent the difficulty of a motor task modulates the
ventral striatal activity.
The success-modulated activity in the VMPFC indicates that

the region also contributes to the reward-based mechanism in-
volved in motor learning and that the “action values” are rep-
resented in this region (35, 38). However, in contrast to the
ventral striatum, which has demonstrated involvement specific to
the early learning stage (69), the VMPFC appears to play a
significant role during the entire course of learning (39). This
difference might be attributable to the dissociable roles of the
VMPFC and the ventral striatum in reward processing, which
have been suggested to be, respectively, associated with action
values and their predicted errors (36). According to this hy-
pothesis, the activity in the ventral striatum would be high in the
early learning stage, as a relatively lower reward rate is expected
(i.e., positive reward prediction error), but would decrease in the
late learning stage, as a relatively higher reward rate is expected.
A future study needs to be conducted to test this hypothesis by
employing a computational model that reliably assesses pre-
dicted rewards and their errors. In sum, the current study pro-
vides valuable insights on how the reward-based mechanisms,
which have been extensively studied in different contexts (34–36,
38, 39, 61, 70), can be explored in the context of motor learning,
through the rare experimental evidence substantiating the role of
the ventral striatum and VMPFC in motor learning (37).

Limitations of the Current Study. There are several limitations of
the current study. First, delineating the neural activity in the
caudate tail by using fMRI has been a challenge, due to its
narrow and curved structure, proximity to the ventricles, and
ensued partial volume effects (42). The current study attempted
to bypass this issue at least partially by performing manual seg-
mentation and using a high-resolution subcortical atlas. Never-
theless, the signals from the caudate tail are likely to be affected
by partial volume effects and signals from nearby ventricles,
which would, in turn, affect the current results, at least to some
degree. Thus, the current results regarding the caudate tail
should be interpreted with caution. Yet, it should also be noted
that evidences from animal studies, especially nonhuman pri-
mate studies, corroborate the presence of spatiotemporally dis-
tinct circuits in the caudate nucleus.
Second, we could not completely rule out the other possibility

that the reduced amount of movement, rather than learning,
might have exerted a considerable influence on the results.
Nevertheless, the absence of significant effects for the untrained
mapping appears to preclude the possibility that the current
findings are simply attributable to prolonged exposure to the
task. Furthermore, null findings from the localizer task—which
was performed without goal-directed movement—strongly sug-
gest that the observed fMRI activities were not solely due to
movement per se. Instead, these activities are more likely due to
learning of goal-directed movement while maximizing utility, or
reward per effort and time. Future studies with more deliberate
experiment designs would be necessary to dissociate out move-
ment from its learned utility and delineate the pure learning-
induced activity in the caudate nucleus.
Third, the current study does not provide a more theoretical

explanation for possible mechanisms of de novo motor skill
learning. While most model-based fMRI studies in reinforce-
ment learning incorporated decision-making tasks with discrete
state and choice spaces (34–36, 38, 70), the current study
implemented a motor learning task that requires learners to
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make decisions continuously in a high-dimensional state and
choice spaces. Thus, learners were more likely to employ policy-
based methods, directly mapping states to advantageous actions
(71, 72), instead of learning all of the values of state–action pairs
in a continuous space. One important contribution of our study is
to bridge the extensively studied reward-based mechanisms to
motor learning.
Finally, the current study also does not provide causal neurobi-

ological accounts for the anterior-to-posterior transition in the
caudate nucleus and cortico-caudate interactions during motor skill
learning. Future studies combining fMRI and noninvasive brain
stimulation targeting selectively cognitive (73) and sensorimotor
(74) networks may enhance our understanding of the intricate
neural mechanisms underlying de novo motor skill learning.

Methods
Participants. Forty-three neurologically healthy young adults were enrolled
in the current study. A total of 30 participants (12 females, mean age = 23.2
y; range = 19 to 30 y) completed all fMRI and behavioral experiment sessions
and were included in the analyses. Among the 13 participants (three fe-
males; mean age = 22.2 y; range = 18 to 28 y) who did not complete the
entire experiment, three were excluded due to technical problems with data
acquisition, and six dropped out due to light-headedness (n = 5) and severe
fatigue (n = 1) during extensive fMRI sessions lasting ∼80 min. Four partic-
ipants were additionally excluded due to unexpected scheduling conflicts
(n = 3) or failure of contact (n = 1).

All participants were right-handed, according to a modified version of the
Edinburgh Handedness Inventory (75). They had normal or corrected-to-normal
vision and provided written informed consent. This study was approved by
Sungkyunkwan University Institutional Review Board.

Task Procedure.We designed a task-based fMRI experiment for a complicated
motor skill learning using an MR-compatible data glove (14 Ultra, 5DT
Technologies), based on a behavioral experiment implementing a data-
glove paradigm (23, 53). The data glove measured finger flexures exclud-
ing the proximal one (two sensors per finger) and abductions between fin-
gers (four sensors) from 14 sensors. The 14D vector (h) representing the hand
posture, measured by the 14 sensors, was linearly mapped onto the 2D
position of the cursor (p) on the screen using the equation (23, 53)

[ x
y
] = [ ax,1 ax,2

ay,1 ay,2
    . . .    

ax,13 ax,14
ay,13 ay,14

] × [h1 h2   . . .     h13 h14 ]T + [ x0
y0

],
i.e., p = Ah + p0, where the mapping matrix A and the offset p0 were de-
termined from the calibration phase in the first fMRI session. The time-series
data were sampled from the 14 sensors at 60 Hz, and each of the data were
smoothed by using the exponentially weighted moving average of 20
samples to reduce the intrinsic noise of the data-glove system. The smoothed
data were used to construct the 14D vector h. For illustrative purposes, we
included a demonstration of finger movements and corresponding cursor
movements in Movie S1.

Stimuli were generated by using a MATLAB toolbox Cogent 2000 (http://
www.vislab.ucl.ac.uk/cogent.php) and were projected onto a custom-made
viewing screen. Participants wore the data glove on their right hand and
placed the hand in a comfortable position, lying supine in the scanner and
viewing the screen via a mirror. They were unable to see their hands
throughout the experiment. Foam pads were applied to all participants to
minimize head motions during the experiment.

Experiment Design. Participants completed two fMRI sessions and five be-
havioral training sessions between the fMRI sessions. The overall experiment
typically lasted 3 wk (range = 8 to 43 d, mean ± SD = 23.4 ± 8.7 d) and was
completed within 45 d. The sessions for each participant were carefully
scheduled so that the duration between the first behavioral training session
and the second fMRI session would not exceed 15 d (range = 6 to 15 d,
mean ± SD = 9.9 ± 2.7 d).
Visit 1.

Familiarization and calibration. On the first visit, participants underwent a
familiarization phase before fMRI scanning. Participants wore the data glove
on their right hands and were instructed to move their fingers freely for
2 min. A bar graph visualizing the real-time variance of each of the 14 sensors
was presented, to encourage participants to explore different movements.
Then, principal component analysis using the covariance matrix of the

acquired time series from 14 sensors was performed on the data. The first
two principal components were used to construct the mapping matrix A,
and the offset p0 was determined such that the mean hand posture was
mapped to the center of the screen. Once the mapping was determined, the
participants were instructed to reach all 25 targets of the 5 × 5 grid to ensure
that all cells were reachable (Fig. 1). In the descriptions to follow, each cell
was referred to as its respective index number, which was determined by
numbering the cells from top to bottom and from left to right. Accordingly,
we referred to the cell at the top left corner (1, 1) as cell 1 and the one
located right below (2, 1) as cell 6.

Resting-state fMRI scanning. One run of an 8-min-long resting-state fMRI
scan was acquired prior to task-based fMRI scans. Participants were instructed
to keep their eyes open, maintain fixation on a cross presented in the middle
of the screen, and refrain from focusing on any particular thought.

Localizer scanning. Localizer scanning was performed to define a region
related to random finger movements. Participants were instructed to freely
move their right fingers at natural speed when the text “Move” was pre-
sented and to stop when the text “Stop” was presented. Each “Move” or
“Stop” condition lasted for 1 min, and a total of four “Move”–“Stop” pairs
were conducted. Using the finger-movement data of the last two “Move”
blocks, we recalibrated the mapping matrix A and the offset p0, as in the
familiarization phase. We also confirmed that all 25 grid cells on the 5 × 5
grid could be reasonably reached by finger movements (Fig. 1).

First main-task fMRI session. For each trial, a target appeared for 5 s as a gray
grid cell with a yellow crosshair at its center in one of the four corner cells on
the 5 × 5 grid (cell 1, top left; cell 5, top right; cell 21, bottom left; and cell 25,
bottom right). The cursor was displayed as a white crosshair. When the
cursor reached the target grid, the color of the target grid changed to red.
Holding a static posture led to the cursor staying at the approximately same
location. The task was to place the cursor on the target grid as quickly and
accurately as possible and maintain the cursor on the target. Participants
were also instructed to move the cursor as straightly as possible when
moving between targets.

Therewere seven runs in the first fMRI session, and each run consisted of 96
movements (eight blocks of 12 movements) from the current location to the
target. The target sequence in each block was ordered as cells
1–5–25–21–1–25–5–21–25–1–21–5–1 and repeated for all eight blocks. In
runs 1 to 3, the previously obtained mapping matrix A, which would be
presented as the mapping to be learned during the following behavioral
training sessions, was implemented. In runs 4 to 6, the two rows of the
mapping matrix A were swapped so that the cursor positions were flipped
about the 45-degree diagonal line. Then, in run 7, the original mapping A
was restored.
Visits 2 to 6.

Behavioral training sessions. Participants performed five behavioral training
sessions on separate days, each lasting about 40 min. The mapping imple-
mented in the behavioral training sessions was the same as the initial
mapping used in runs 1, 2, 3, and 7 of the first fMRI session (i.e., the “trained
mapping”).

Each session was composed of five runs. The first three runs presented the
task that was identical to the task presented during the fMRI sessions (i.e., the
“main task”), with targets appearing at the four corner cells of the grid. In
the last two runs, participants were presented with the “path-following
task,” in which they had to reach not just the four corner cells, but also
the “in-between” cells that consisted of the shortest path between each pair
of the corner cells (illustrated in SI Appendix, Fig. S1). Thus, instead of simply
reaching cell 1 and then cell 5, participants had to reach cells 1, 2, 3, 4, and 5
consecutively. In each trial, the current target was presented along with the
four upcoming targets, so the participants were aware of the path to follow
in advance. Since the order of the corner-cell target sequence was the same
as in the main-task blocks, the exact target sequence in each path-following
block was cells 1–2–3–4–5–10–15–20–25–24–23–22–21–16–11–6–1–7–13–19–
25–20–15–10–5–9–13–17–21–22–23–24–25–19–13–7–1–6–11–16–21–17–13–9–
5–4–3–2–1 (a total of 49 targets, with bold cell numbers indicating the corner
cells) (SI Appendix, Fig. S1B). As each path-following run contained eight such
blocks, each behavioral training session included a total of 16 path-following
blocks (two runs of eight blocks). If the cursor stayed on the current target cell
for 100 ms or did not reach it at all in 5,000 ms, the target was moved to the
next cell in the sequence. Due to this adaptive design, the time to complete
the path-following runs would differ between individual participants. The
purpose of these runs was to encourage participants to generalize the
learning of the cursor-posture mapping so that they would not merely rely on
the cognitive and discrete knowledge of specific hand postures corresponding
to the four corner cells.
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Visit 7.
Second main-task fMRI session. On the seventh visit, participants underwent

the second fMRI session, which followed a procedure nearly identical to that
of the first fMRI session. Therewere no familiarization and calibration phases.
For the majority of participants, the second fMRI session was performed
within 24 h after the last behavioral training session. Otherwise, participants
practiced the main task for a few minutes before the fMRI session.

Behavioral Data Analysis. All statistical analyses and visualization were per-
formed by usingMATLAB (Versions R2015b and R2018a,MathWorks), Python
(Version 3.6), and R (Version 3.5.3). To obtain measures of learning perfor-
mance, we calculated the success rates and aspect ratios of the cursor tra-
jectories from two fMRI sessions and five behavioral training sessions.
Success rate. A trial-by-trial success rate was calculated as a proportion of
time during which the cursor was on the target, i.e., targets turned on in red.
As each task block was designed to consist of all of the 12 possible paths
between four targets and the same target sequence was repetitive, we av-
eraged the success rate in each block and estimated the learning rate (see SI
Appendix, Fig. S1 for the details). In addition, we also calculated the overall
success rate for each mapping, by averaging the block-by-block success rates
from all fMRI and behavioral training sessions and used it as individual
participants’ learning performance.
Learning rate. To calculate the individual learning rate, we fitted an expo-
nential model to the block-by-block success rate (S) for the trained mapping
from all fMRI and behavioral training sessions (SI Appendix, Fig. S2).

S(t) = A(1 − e−Bt) + C.

In the equation, t and B denote training-block numbers and the
learning rate.
Aspect ratio. For each of the trajectories between targets made by partici-
pants, we calculated its aspect ratio to find whether participants simply
memorized the hand postures corresponding to targets or learned to control
the cursor. To calculate the aspect ratio, we first estimated the maximum
perpendicular distance between the straight line connecting the start to end
points and the in-between points on the actual cursor trajectory for each trial
(23). Then, the distance was normalized with the length of the straight line.
Time-varying amount of movement. We calculated the time-varying amount of
movement to examine whether it was collinear with the time-varying suc-
cess rate used for the GLM analyses. For each of 14 sensors, we calculated the
displacement (i.e., absolute change) for every 1 s and defined their average
as the movement amount. For each of the three runs from the trained
mapping, we calculated Pearson’s correlation coefficients between the time-
varying amount of movement and the success rate.
Duration of the experiment. The duration of the entire experiment in days,
which might be considered as a potential confounding factor in the analyses
of performance measures, did not show significant correlations with the
overall success rate (R = 0.084, P = 0.66). It was thus not included as a
covariate in the main analyses.

The 3-T MRI Acquisition. We acquired fMRI data using a 3-T Siemens Mag-
netom Prisma scanner with a 64-channel head coil. Functional scans were
acquired by using an echo planar imaging (EPI) sequence with the following
parameters: 1,096 volumes (1,113 volumes for resting-state fMRI); repetition
time (TR) = 460 ms; echo time (TE) = 27.20 ms; flip angle (FA) = 44°; field of
view (FOV) = 220 × 220 mm; matrix, 82 × 82 × 56 voxels; 56 axial slices; slice
thickness = 2.7 mm. For anatomical reference, a whole-brain T1-weighted
anatomical scan was performed by using a magnetization-prepared rapid
acquisition with gradient echo MPRAGE sequence with the following pa-
rameters: TR = 2,400 ms; TE = 2.34 ms; FA = 8°; FOV = 224 × 224 mm; ma-
trix = 320 × 224 × 320 voxels; 224 axial slices; and slice thickness = 0.7 mm.
Before the functional scans, two EPI images with opposite-phase encoding
directions (posterior-to-anterior and anterior-to-posterior) were acquired
for subsequent distortion correction, with the following parameters: TR =
7,220 ms; TE = 73 ms; FA = 90°; FOV = 220 × 220 mm; matrix = 82 × 82 × 56;
56 axial slices; and slice thickness = 2.7 mm.

fMRI Data Analysis. Analyses of fMRI data were performed by using AFNI
(Analysis of Functional NeuroImages, NIH; https://afni.nimh.nih.gov), MATLAB
(Versions R2015b and R2018a), FreeSurfer (Version 6.0.0; http://surfer.nmr.
mgh.harvard.edu), Python (Version 3.6), and R (Version 3.5.3).
Preprocessing. Anatomical and functional image data were preprocessed by
using AFNI. Task-based and resting-state functional images were first cor-
rected for slice-time acquisition and realigned to adjust for motion-related
artifacts. Then, retrospective distortion correction was performed by using a

field map calculated from the aforementioned two EPI images with
opposite-phase encoding directions. The corrected images were spatially
registered to the anatomical data and transformed into Montreal Neuro-
logical Institute (MNI) template and resampled into 2.68-mm-cube voxels. All
images were spatially smoothed through a Gaussian kernel of 4 × 4 × 4-mm
full-width at half-maximum and scaled the time series to have a mean of 100
and range of 0 and 200.
Whole-brain voxel-wise GLM analysis. To identify regions responding to “suc-
cess” (i.e., reaching a target), we designed a parametric regressor used in a
subject-level GLM analysis (AFNI’s 3Ddeconvolve function). Specifically, the
time-varying success rate in 1-s-long time bins, defined as the proportion of
time during which the cursor stayed on the target grid cell and turned it red,
was used as a parameter-modulating pulse regressors at the middle of the
time bins. The success rate was then convolved with a gamma function
modeling a canonical hemodynamic response function (HRF). To balance the
difference in the overall success rate between the early and late learning
stages, its mean value was removed with “stim_times_AM2” option in the
3dDeconvolve function (see the modeled responses modulating success rate
in SI Appendix, Figs. S4 and S11). To better account for potential deviations
from the HRF, a two-parameter Statistical Parametric Mapping gamma
variate basis function with temporal derivatives (using 3dDeconvolve with
“SPMG2” option for a basis function) was adopted for the main GLM results
(76). For regressors of noninterest, we included six regressors estimating
rigid-body head motion and five regressors for each run modeling up to
fourth-order polynomial trends in the fMRI data. The volumes associated
with excessive head motion (defined as those with a displacement greater
than 0.4 mm; mean ± SD = 0.6 ± 1.0%, range = 0.0 to 5.4% of the entire
volumes) were excluded from the analysis. The respective amounts of av-
erage head motion in the resting-state and task-based fMRI runs are shown
in SI Appendix, Fig. S10.

For each of the two fMRI sessions (“early” and “late” learning stages), the
GLM analyses were performed separately for trained (fMRI runs 1 to 3) and
untrained (fMRI runs 4 to 6) mappings. An additional fMRI run (run 7) was
performed with the trained mapping, but we did not analyze the data in
this study. Then, the regression coefficients of the parametric regressors
were taken to group-level whole-brain voxel-wise paired t tests (AFNI’s
3dttest++ function) between the early and late stages. The voxel-wise
threshold was P < 10−3, and the criterion of 40 suprathreshold voxels was
determined by a conservative nonparametric method of randomization and
permutation to provide a cluster-wise corrected threshold of P < 0.05 within
the whole-brain group mask (AFNI’s 3dttest++ function with “-Clustsim”

option). Notably, the results shown in Fig. 3 and SI Appendix, Table S1
were at much more stringent significance levels than the threshold (77). The
commonly significant clusters in both “early” and “late” stages (voxel-wise P <
10−3, >40 voxels) were identified as the regions commonly activated in both
stages and listed in SI Appendix, Table S1, “Common” section.
ROI analysis. Based on the GLM results and previous literature on reward
processing, the bilateral VMPFC, caudate head/body/tail, anterior/posterior
putamen, and NAcwere chosen as ROIs. Themanually segmented caudate ROIs
were used for the main analyses (SI Appendix), and the VMPFC ROIs were
defined by using an atlas provided in AFNI (78). All other ROIs were generated
by using the Reinforcement Learning Atlas (79). The putamen ROIs were di-
vided into the anterior (Y > −0.56) and posterior (Y < −3.25) regions, with a
1-voxel gap between them to reduce partial volume effects, as suggested by
literature (80) (SI Appendix, Fig. S6). We confirmed that the defined anterior
and posterior putamen ROIs included the main focus of activation, respec-
tively, for the early and late stages, which were reported (11).

For each ROI, the average beta estimates from theGLManalyses of success-
rate modulation were extracted by using AFNI’s 3dmaskave function. The
extracted data were then subjected to a two-way repeated-measures per-
mutation ANOVA, with the region and learning stage (early vs. late) as
within-subject factors. For all these analyses, the effect sizes were estimated
by using partial eta-squared values, and subsequent post hoc pairwise t tests
were performed with the Holm–Bonferroni adjustment to correct for mul-
tiple comparisons. In addition, to assess the effects of the learning stage and
mapping (trained vs. untrained), a two-way repeated-measures permutation
ANOVA and subsequent post hoc t tests were also performed. To account for
deviations from normality and homogeneity of variances in the fMRI activ-
ities, permutation ANOVA and Wilcoxon signed-rank test were adopted
throughout the analysis.
Resting-state functional connectivity analysis. After initial preprocessing, the
resting-state fMRI data were further processed to control for white matter
(WM) signals according to the following procedures. First, each participant’s
WM mask was created from automatic segmentation performed by Free-
Surfer’s recon-all pipeline. Then, the resting-state fMRI time courses were
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detrended by using fourth-order polynomial regressors and bandpass fil-
tering (0.01 to 0.1 Hz) (AFNI’s 3dTproject function). To avoid spurious cor-
relation, we regressed out the first five principal components of signals from
the WM mask (81). However, we did not perform global signal regression to
avoid introducing artifactual anticorrelations (82). Importantly, signals from
the ventricles were also not regressed out, in order to minimize the signal
loss from the caudate tail, which is an ROI located immediately next to the
ventricles.

The resulting residual images were then used for the seed-based func-
tional connectivity analysis. The seed ROIs were defined as the manually
segmented individual ROIs of the caudate nucleus (bilateral head, body, and
tail) (SI Appendix, SI Methods). We also independently defined two cortical
ROIs: one in the bilateral DLPFC for the anterior cognitive loop and the other
in M1/S1 for the posterior sensorimotor loop.

The bilateral DLPFC ROI was defined as a mask obtained from Neurosynth,
a large-scale meta-analytic fMRI database (https://neurosynth.org/; accessed
on September 23, 2019), with the use of the term “dorsolateral prefrontal,”
which retrieved 1,049 studies and 36,216 activations (SI Appendix, Fig. S7A).
We then selected the two most significant clusters in the right and left
prefrontal regions and combined them into a single ROI. For the ROI in the
left M1/S1, we performed a whole-brain GLM analysis for the localizer fMRI
data contrasting conditions between “Move” and “Stop,” and then the
second-level group analysis selected the most significant positive cluster in
the left M1/S1 region using AFNI’s 3dttest++ function (SI Appendix, Fig. S7B).
The other six significant clusters related to finger movements are listed in SI
Appendix, Table S4. We applied a highly stringent voxel-wise threshold of
P < 10−5 and a criterion of a cluster size larger than 150 voxels to more
clearly define the discrete ROIs.

In addition to the ROIs in the leftM1/S1 and in the DLPFC, we also defined a
region in the visual cortex to further test whether the interaction in the visual
loop via the caudate tail accounts for the learning performance. Specifically,
we identified a region evoked by visual stimuli using the data from the late
stage for the trained mapping, in which the activity in the caudate tail
significantly increased (Fig. 3). We performed a whole-brain GLM analysis
with a regressor encoding the target onsets, which was then convolved with
a canonical hemodynamic response (AFNI’s 3dDeconvolve function). Then,
the second-level group analysis defined the significant positive cluster in the
bilateral visual cortex using AFNI’s 3dttest++ function with a voxel-wise
threshold of P < 10−3 and 40 suprathreshold voxels determining a cluster-
wise corrected P < 0.05 (SI Appendix, Fig. S7C)

For the cognitive loop, we tested the connectivity between the anterior
regions of the caudate nucleus (bilateral caudate heads and bodies) and the

DLPFC. For the sensorimotor loop, we tested the connectivity between the
bilateral caudate tails and the leftM1/S1, whichwasmost significantly related
to contralateral right fingermovements. Finally, for the visual loop, we tested
the connectivity between the bilateral caudate tails and regions in the visual
cortex evoked by the visual stimuli.

For each participant, we calculated Pearson’s correlation coefficients be-
tween the mean time series extracted from each seed and residual signals
from all other voxels for each of three cortical ROIs (DLPFC, M1/S1, and visual
cortex) and those from the whole brain. The correlation coefficients were
converted to Z values by using Fisher’s transformation (AFNI’s 3dTcorr1D
function with “-pearson -Fisher” options). Finally, we concatenated the
resulting Z maps of the 29 participants (after excluding one outlier) and
correlated them with the individual learning performance. We excluded one
participant who had experienced technical issues that affected the perfor-
mance during the behavioral training sessions; the participant showed ex-
ceptionally low success rates during these sessions (lower 0.3% in the
distribution of performance, shown as the 29th participant in SI Appendix,
Fig. S2).

The following tests were conducted for the correlation analyses: 1) four
tests between the bilateral caudate heads/bodies and the DLPFC, 2) two tests
between the bilateral caudate tails and the left M1/S1, and 3) two tests
between the bilateral caudate tails and the ROI in the visual cortex. To correct
for multiple comparisons, we reported Bonferroni-corrected P values for
these tests. In addition, the same analysis was performed for all of the voxels
in the whole brain with a voxel-wise threshold of P < 10−3, and 40 supra-
threshold voxels determining a cluster-wise corrected P < 0.05. The results
are summarized in SI Appendix, Fig. S9 and Table S3.

Data Availability. The behavioral and MRI data are available via the Open
Science Framework (OSF) database at https://osf.io/rmn63/.
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